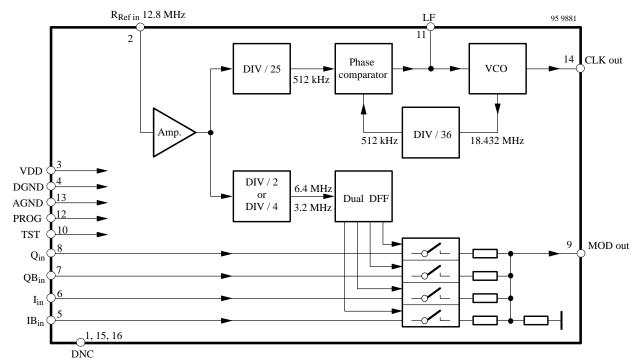
MATRA MHS U3770M

CT2 I/Q Modulator and Clock Circuitry

Description


U3770M is a quadrature modulator realized with MATRA MHS' advanced 0.8 micron CMOS process. The IC is especially designed for CT2 application in conjunction with TELEFUNKEN's RF/IF signal processor

U2760B and a CT2 baseband controller (i.e., AMD PhoXTM controller Am79C4xx). Together with TELEFUNKEN's PLL IC U2783B and the GaAs front end U7001BG, a complete CT2 chip set is available.

Features

- Programmable 0.8/1.6 MHz quadrature modulated carrier generation
- More than 30 dB LO and sideband suppression
- 18.432 MHz CMOS level clock generation
- Supply voltage range 2.7 V to 3.3 V
- Low power consumption, typical 6 mW
- SO 16 package or die form

Block Diagram

TEMIC

U3770M MATRA MHS

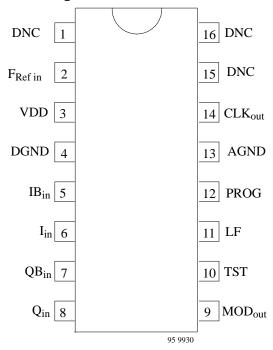
Functional Description

U3770M has been designed to reduce power consumption and cost of CT2 devices. An innovative CMOS I,Q modulator with an extremely low current provides all the advantages of I,Q modulation:

- No requirement for FM deviation tuning
- Eliminates the Gaussian filter
- Simplifies the power ramping control

The modulated output carrier can be programmed to be 0.8 MHz or 1.6 MHz by the PROG control pin.

The typical supply voltage is 3 V @ 2 mA.


To reduce overall system cost, an internal PLL generates a 18.432 MHz clock signal from the system 12.8 MHz

reference oscillator. This way, only one crystal oscillator is needed in the complete CT2 device.

Internally, the 12.8 MHz reference signal is fed into a shaping amplifier and then into two logic dividers, to generate a 512 kHz and a programmable 3.2 or 6.4 MHz clock. This clock is divided by 4 by two D flip-flops. The flip-flop outputs drive the four analog switches in quadrature. A pair of analog switches make a local oscillator (LO) suppression mixer. By summing the other pair outputs, we obtain both LO and sideband suppression, of more than –30 dBc.

The 512 kHz clock drives a frequency synthesizer. The VCO runs at a fixed frequency of 18.432 MHz. The VCO control voltage (LF pin) controls the VCO frequency.

Pin Description

Pin	Symbol	Function		
2	F _{Ref in}	External 12.8 MHz reference		
		frequency input		
3	VDD	Supply voltage		
4	DGND	Digital ground		
5	IB _{in}	Analog switches input		
6	I _{in}	Analog switches input		
7	QB _{in}	Analog switches input		
8	Qin	Analog switches input		
9	MOD _{out}	Modulator output signal		
10	TST	Test input, must be connected to		
		GND (only factory use)		
11	LF	PLL loop filter		
12	PROG	PROG = 0, 1.6 MHz mode		
		PROG = 1, 0.8 MHz mode		
13	AGND	Analog ground		
14	CLK _{out}	Digital CMOS clock output		
		18.432 MHz		
1, 15,	DNC	Do not connect		
16				

MATRA MHS

Absolute Maximum Ratings

Stresses at or above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V_{DD}	6	V
Modulator input voltages	I		
	IB	-0.5 to $ m V_{DD}$	V
	Q		
	QB		
Reference frequency input	F _{Ref in}	-0.5 to $V_{ m DD}$	V
Ambient temperature	T _{amb}	-40 to +85	°C
Storage temperature	T_{stg}	-65 to +150	°C
Junction temperature	Ti	$T_i < T_{amb} + 10$	°C

Operating Range

Parameters	Symbol	Value	Unit
Supply voltage	V_{DD}	3 ± 10%	V
Ambient temperature	T _{amb}	−5 to +70	°C
Junction temperature	T_{j}	$T_j < T_{amb} + 5$	°C
Storage temperature	T _{stg}	-40 to +125	°C

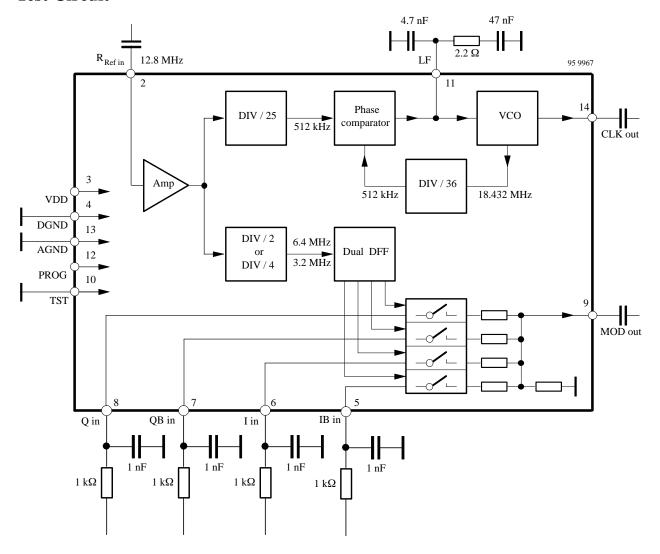
Electrical Characteristics

Test conditions (unless otherwise specified) related to test circuit

 $V_S = 3 \text{ V}$, V_{BIi} , V_{BIi} and V_{BQi} , $V_{BQi} = 1 \text{ V}_{PP}$ single ended, oscillator frequency $F_{Ref in} = 12.8 \text{ MHz}$, $T_{amb} = -5 \text{ to } +70^{\circ}\text{C}$

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage range	Pin 3	V _{DD}	2.7	3	3.3	V
Supply current 1)	Pin 3	I _{DD}		2		mA
F _{Ref in}	Pin 2					
Input voltage		V _{F Ref in}	150			mV _{PP}
Input impedance		Z _{F Ref in}	100			kΩ
I, Q inputs	Pins 5, 6, 7 and 8					
Input voltage	Single ended	V _{Iin, Qin}		1		V _{PP}
Input impedance	Single ended	Z _{Iin, Qin}		20		kΩ
Input frequency		F _{Iin, Qin}		18		kHz
External bias voltage		$V_{IB, QB}$		1.5		V
MOD _{out}						
Output level ²⁾	Unloaded	V _{Mod out}	200			mVRMS
LO and sideband suppres-		LO sub		-30		dBc
sion		SB sub				
Output impedance		Z _{Mod out}		5		kΩ
CLKout	Pin 14					
Output frequency		F _{CLK out}		18.432		MHz
Output level		V _{CLK out}		CMOS		
Output load		Z _{CLK out}			50	pF

Note 1) $C_L = 50 \text{ pF on Pin } 14$

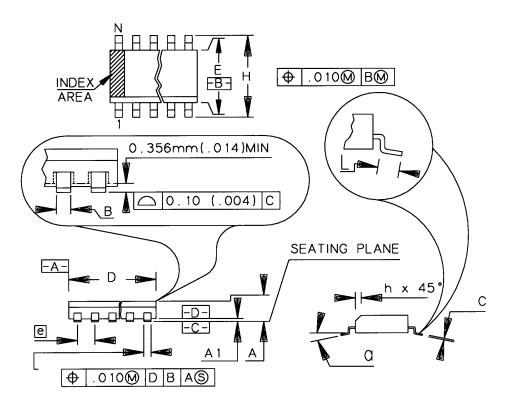

Rev. A1: 07.07.1995

Note 2) The output signal contains some harmonics, to be filtered by an external low-pass filter

TEMIC

U3770M MATRA MHS

Test Circuit



Dimensions in mm

Package: SO 16

MATRA MHS

16 PINS SO . 150

	MM		INCH	
Α	1.55	1.73	. 06 1	.068
A 1	0.127	0.25	. 004	.0098
В	0.35	0.49	.014	.019
С	0.19	0.25	. 0075	. 0098
D	9.80	9.98	. 386	. 393
E	3.81	3.99	. 150	. 157
е	1.27	BSC	. 050	BSC
Н	5.84	6.20	. 230	. 244
٦.	0.25	0.41	.010	.016
L	0.41	0.89	. 0 16	. 035
N	16		16	
а	0°		8°	

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423